Fluid Flow through Carbon Nanotube Forest Microchannels
نویسنده
چکیده
Due to their mechanical robustness, electrical conductivity, and porosity, vertically aligned carbon nanotubes (CNTs) are an intriguing material for microfluidics. Recently, Chen and colleagues showed that functionalized CNT features can efficiently capture and filter particles in microfluidic flows; and permeability was characterized using CNT-blocked channels. Here, we present flow characterization data for microfluidic channels defined by patterned non-functionalized CNTs. We characterize the pressure-flow relationship of these channels, report observations of wetting, and verify confinement of water flow bounded by the non-functionalized CNT forest. We also present a packaging scheme that will enable future investigation of combined fluidic and electrical functionality.
منابع مشابه
Slippage of water past superhydrophobic carbon nanotube forests in microchannels.
We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slipp...
متن کاملTransverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory
In this paper, the transverse vibration of a triple-walled carbon nanotube (TWCNT) conveying fluid flow is studied based on the strain/inertia gradient theory with van der Waals interaction taken into consideration. The nanotube is modelled using Euler-Bernoulli beam model and the Galerkin’s method is employed to obtain the CNT complex valued Eigen-frequencies. The effects of the fluid flow tho...
متن کاملInvestigation of Dynamical Behavior (Transverse Vibration) and Instability Analysis of Carbon Nanotubes Conveying Nanofluid
This work focuses on the dynamical behavior of carbon nanotubes, including vibration, wave propagation and fluid-structure interaction. In the present research, transverse vibration of nano fluid conveying carbon nanotubes is investigated. To this end, based on the nonlocal and strain-inertia gradient continuum elasticity theories and by using rod and Euler-Bernoulli beam models, the system’s d...
متن کاملA nanoscale probe for fluidic and ionic transport.
Surface science and molecular biology are often concerned with systems governed by fluid dynamics at the nanoscale, where different physical behaviour is expected. With advances in nanofabrication techniques, the study of fluid dynamics around a nano-object or in a nano channel is now more accessible experimentally and has become an active field of research. However, developing nanoscale probes...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کامل